

Diffusion Model-Augmented Behavioral Cloning

Hsiang-Chun Wang*

Shang-Fu Chen* Ming-Hao Hsu

4.68

Chun-Mao Lai Shao-Hua Sun NTU Robot Learning Lab

Imitation Learning

National Taiwan University

Modeling Demonstrations

Modeling the conditional probability p(a|s)

Main Experiments

Ablation Studies

Modeling the joint probability p(s, a)

Comparison	Conditional Probability	Joint Probability
	p(a s)	p(s, a)
Advantages	Training stabilityInference efficiency	 Better generalization
Disadvantages	 Poor generalization 	Inference inefficiencyManifold overfitting

- $\pi_{\rm Conditional}$ generalizes poorly

Comparing generative models on Maze

Energy-based model (EBM), variational autoencoder (VAE), generative adversarial network (GAN), diffusion model (DM)

Evaluating generalization performance on Fetch

• Varying the noise added to initial states and goal locations

Noise Ratio

Noise Ratio

$\pi_{\rm Joint}$ suffers from manifold overfitting

Our Approach: Diffusion Model-Augmented Behavioral Cloning (DBC)

Stage 1: Learning a **Diffusion Model**

Stage 2: Learning a Policy with the Learned Diffusion Model