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Advantages
• Training stability

• Inference efficiency

• Better generalization

Disadvantages • Poor generalization
• Inference inefficiency

• Manifold overfitting

Diffusion Model-Augmented Behavioral Cloning

Our Approach: Diffusion Model-Augmented Behavioral Cloning (DBC)

(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model

s

a
ϵ Diffusion 

Model ϕ ̂ϵ

Expert’s Demonstrations D
τ1

s1
1

a1
1

s1
2

a1
2

s1
n1

a1
n1

τ2

s2
1

a2
1

s2
2

a2
2

s2
n2

a2
n2

τM

sM
1

aM
1

sM
2

a3
2

sM
nM

aM
nM

Sample

ℒdiff

Learning objective

Learnable mapping

Frozen mapping s

̂a
ϵ

Diffusion 
Model ϕ

s

a
ϵ

ℒagent
diff

ℒexpert
diff

ℒDM

Policy

π as ̂a ℒBC

Agent’s 

action

Expert’s 

action

State

(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Stage 1: Learning a Diffusion Model Stage 2: Learning a Policy with the Learned Diffusion Model

Imitation Learning Main Experiments
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Expert Demonstration
State and action sequences

Key Idea
Expert Demonstrations

Imitate the Expert

Modeling Demonstrations
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(BC)

Modeling the conditional probability p(a|s)
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Implicit BC

Modeling the joint probability p(s, a)

•  generalizes poorly


•  suffers from manifold overfitting
πConditional
πJoint
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Ablation Studies

Evaluating generalization performance on Fetch

Hsiang-Chun Wang* Shang-Fu Chen* Ming-Hao Hsu Chun-Mao Lai Shao-Hua Sun
National Taiwan University NTU Robot Learning Lab
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FetchPick FetchPush
• Varying the noise added to initial states and goal locations

Comparing generative models on Maze
• Energy-based model (EBM), variational autoencoder (VAE), 

generative adversarial network (GAN), diffusion model (DM)
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