

Hung-Yi Lee

Guan-Ting Liu*

En-Pei Hu*

Environment

Robot Learning via Deep Reinforcement Learning

Robot Learning via Deep Reinforcement Learning - Issues

Dweep Trivedi*

Jesse Zhang*

Shao-Hua Sun

Joseph J. Lim

Deep Reinforcement Learning

Reinforcement Learning via Synthesizing Programs

Stage 1 Learn a program embedding space from randomly generated programs Goal Learn the grammar and the environment dynamics

Reconstructed Program

Stage 2 Search for a task-solving program using the cross-entropy method (CEM) Goal Optimize the task performance

Decoded Program

Karel Tasks

StairClimber

TopOff

Maze

Harvester

FourCorners

CleanHouse

Quantitative Results

Stage 2 Searching for a task-solving program using the cross-entropy method

Decoded Program

Stage 2 Searching for a task-solving program using the cross-entropy method

Poor credit assignment

Evaluate each candidate program solely based on the **cumulative return** of its execution trace

<u>Cannot</u> accurately attribute rewards to corresponding program parts

Hung-Yi Lee

Guan-Ting Liu*

En-Pei Hu*

Environment

HPRL: Hierarchical Programmatic Reinforcement Learning

Stage 1 Learning a compressed program embedding space from randomly generated programs

Reconstructed Program

HPRL: Hierarchical Programmatic Reinforcement Learning

Stage 2 Learning a meta policy to produce a series of programs (*i.e.*, predict a series of actions) to yield a composed task-solving program

Quantitative Results - Karel Tasks

Karel-Hard Tasks

OneStroke

DoorKey

Seeder

Snake

Additional Experiments

Limited program distribution

Synthesize out-of-distributionally long programs

ullet

- HPRL can synthesize programs longer than the dataset programs (< 40 tokens) better than LEAPS

Poor credit assignment

Learning from episodic reward **Dense:** Reward each subprogram based on its execution trace

• The hierarchical design of HPRL allows for better credit assignment with dense rewards, facilitating the learning progress

